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Introduction:
— What is Quadrupole RMF current drive?

Why attempt quadrupole RMF current drive?
Numerical Predictions

Experimental observations

— Comparable drive capability

— More prone to n=2 instabilities

— Large internal oscillations for some parameters

Summary
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Quadrupole vs. dipole A=,
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T n=2,6,10.,.. R R,

Quadrupole field does not penetrate tor =0 (B, a 1).

— Not a problem since RMF is usually confined to the FRC edge.
Coll separation of ¥2 angle a = 11/12 - n=6 mode Is zeroed
(optimum angle)

The rotation rate of the RMF field, w,,; o Y2w,
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Vacuum Quadrupole Field Pro

P

Simple quadruple coil set Quadrupole coil set: a=1/12

)
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Potential advantage to quadrupole =5~

Quadrupole Dipole

Symmetric radial and azimuthal force on plasma

Quadrupoles are known to stabilize n=2 rotational modes, and should
be effective at centering the plasma

For a constant uniform resistivity, numerical calculations predict
slightly better current drive for quadrupoles.

Reduce turbulence and lower resistivity?
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MHD Model
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Equations are solved numerically in e
the r-0 plane.
To study FRC sustainment, two RMF Antenna
axial effects must be included:
1. Average g condition: <p> =1 - ¥2x 2 y
VA

2. Equalization of temperature and
density (pressure) between inner

and outer field lines (including
effects of rotation).

RMF2003.15
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Numerical Predictions oy

Numerical simulations using RMF2 (a 2D (r-68) Hall MHD code).
Parameters similar to experimental parameters.
— Uniform resistivity (n = 100 puQ-m)
— Ty = 30 €V, Vacuum By, (r = r,) = 3.5mT
fame = 105 kHz (Dipole), 210 kHz (Quadrupole)
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The TCS Facility P
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The Internal Magnetic Probe

Internal Magnetic Probe

Magnetic Probes
located inside Beryllia

jacket \

TCS Vacuum \

RMF Antenna
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Signal Processing Internal Probe Data =;_~

Probe can be aligned to measure B, only, B, only, or at 45°
to measure both B, and B.,,.

With the probe at 45°, so that both B, and B, are measured,

It Is assumed that:
— The signal within +10 kHz of f,,- is RMF signal and is thus in the x-
direction.
— The rest is assumed to be in the z-direction.

— This is not always a good assumption.
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Experimental Results:

Current Drive Efficiency
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ternal Profiles =,

PR
Quadrupole (w=260 kHz) Dipole (w=105 kHz)
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However, IS more localized at the edge.
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More prone to n=2
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As aresult, FRCs formed by IS more prone to n=2,
possibly due to insufficient RMF present near field null where
centrifugal force is strong (H.Y. Guo et al, this meeting).
frot ~ 9 kHz, similar to the dipole case.
As in the dipole case, reducing w aggravates rotational instabilities.
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Stronger Internal Oscillations Pt
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» Quadrupole RMF also leads to strong internal oscillations in By,
especially at lower w, i.e., 164 kHz (#14330).

» Note that oscillations appear as r, approaches the wall, and persist
until the end of the pulse.

US-Japan CT Workshop, Sept. 14-16, 2004, Santa Fe, NM 14



Internal oscillations in By P
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» Quadrupole RMF driven FRCs tend to develop low frequency internal
oscillations in By, especially at large x, and low RMF frequency.

— Large amplitude (comparable to RMF amplitude atr =r
— Penetratetor = 0.

wall*
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Internal oscillation spectrum .
<
B, Shot 14337, f =164.2 kHz

Probe set for By only, time=1.5 to 2.5 msec
0.4
0.35
0.3
0.25
E 0.2
0.15
0.1
0.05

00 20 40 60 80 100 120 140 160 180
f (kHz2)
» The B, spectrum has a dominant low frequency spike.
— Large amplitude at small and large radius.
— ~180° phase shift between inner and outer regions
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Inner mode structure Ao

Antennas produce a rotating n=2 field, which is confined to
the outer region of the FRC.

An internal n=1 field spontaneously develops, and fully
penetrates the FRC (all the way to the null).

— We believe that it is an n=1 field because:

It co-rotates with the electrons and produces a single cycle in the
rotation time of the electron fluid. (The rotation frequency of the electron
fluid can be calculated using the internal magnetic profile and the
interferometer.)

It fully penetrates to r = 0 (higher order modes must vanish at the axis of
symmetry)

What is the source of the low frequency inner field?
— Tilt ?
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Numerical calculation with inner

structure

» Numerical simulations using RMF2
— a 2D (r-6) Hall MHD code.

»  Simulations do not spontaneously
produce inner rotating structure.

» Simulations with an initial n=1
internal structure, and a resistivity
profile that is sharply peaked near
the edge yield signals similar to the
experimental observations.

» Inner current is driven by the rotating

internal structure.

» Atorque is applied to the structure
through the continuous tearing and
reconnection of field lines (as in
“edge-driven mode”).

Cluadd?

t=100.0 usec

50
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Summary Py ot

Quadrupole RMF is as efficient as dipole RMF for a given
antenna current,and similar effective wgye. (Quadrupole
antennas must be driven at double the frequency.)

Quadrupole RMF is more localized to the edge.

FRCs driven by quadrupole RMF are more prone to the n=2
Instability.

FRCs driven by quadrupole RMF are prone to large internal
oscillations.

The above observations = narrow operating range for
guiescent, stable FRCs.
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